Safe & Secure Nuclear Engineering in an Uncertain World

Paul Smith Arup

The World's Natural Hazards

7 Major Issues

From Olaus Magnus: Historia de gentibus septentrionalibus, 1555.

The risk from natural hazards is diverse, with the hazard-types ranging across:

- Geomorphological;
- Geological;
- Climatological;
- Ecological;
- Astronomical;
- Biological; and,
- Man-Made scenarios.

RUP

Α

The 1845 Hekla Eruption by Danish physician A. S. I. Haalland; National Museum of Iceland.

THE ERUPTION OF MOUNT HECLA, ICELAND - SKETCHED FROM THE SOUTH-WEST ON BOARD THE DANISH MAIL STEAMER "VALDEMAR," MARCH 24, 1878

Eruption of Mount Hekla in 1845; The Graphic, April 20th 1878, p 392.

ARUP

Eruption column from Hekla in 1947 – 127 km away at 6.59 a.m. on 29th March, about 18 minutes after eruption began. Height of column is 27,000 m. Hekla: A Notorious Volcano by Sigurdur Thorarinsson, 1970.

Photo taken in early morning on the 5th March 2017 (Canon EOS 1DS II and Sigma 300mm f4 APO lens)

Photo taken at first sun rise on the 8th March 2017 (Canon EOS 1DS II and Sigma 300mm f4 APO lens)

ARUP

Seven major issues face us now and into the future as a society, in this century, and even beyond for subsequent centuries to come – for our children's children:

- **Population Density** and its future increase relative to the planet's size;
- Economic Prosperity and the resultant personal wealth gap;
- Natural Resources diminishing without immediate alternatives;
- **Devastating Natural Hazards** with long-term periodicity;
- **Pollution and Waste** *dangers resulting from industrialization;*
- Climate Change causing sea rise, extreme storm weather events, drought; and,
- Political Will & Longer Term Strategy to mitigate and defend against future hazard-shock events.

ARUP

Now Reality

Our Man-Made Structural Fabric

New York's Structural Fabric - NYC

ARUP

New York's Structural Fabric is Adjacent to the Coastline

Sharing an Uncertain World in 2017

New York's Structural Fabric is Adjacent to the Coastline

NYC and all US Eastern Seaboard Cities are Vulnerable

ARUP

Parts of the System	Possible Vulnerable Parts of the System to Risk of Loss
Physical	Structural – Buildings, Infrastructure, Facilities, Networks, Supplies, Services
Natural	Resources – Water, Materials, Fuel, Minerals, Renewables, Energy
Human	Victims – Deaths, Lost, Permanent Harm, Viruses, Disease
Social	People – Community, Well Being, Solidarity, Happiness
Economic	Business – Industry, Science, Technology, Production, Jobs, Wealth
Political	Rulers – Governance, Leadership, Democracy, Law, Policy, Institutions
Security	Peace and Stability – Home, Abroad, World, War, Criminality, Terrorism

Holistic Integrity

Robustness of the man-made Structural Fabric requires high Holistic Integrity of the:

- Buildings
- Facilities
- Infrastructure
- Networks
- Services
- Supplies

Design Objectives:

- Sustainable Basis to Design
- Low Energy Construction Methods
- Utilise Local Materials and Products
- Buildings are for People
- Consider the People Under Stress
- Account for Socio-Technical Needs
- Use Low Carbon-Input Materials
- Use Low Carbon-Input Systems
- Low External Energy Feed
- Low External Services Provision
- Plan for Long Period Islanding
- Plan for Peak Habitation Islanding
- Optimum Natural Day Lighting
- Integral Renewable Energy
- Stored Energy for Night Periods
- Ensure Personal Dignity
- Ensure Social Solidarity and Help
- Provide Medical Capability
- Intuitive Medical Equipment
- As-Needed Expert Guidance

Design Principles:

- To Fit with the Coping Strategy
- Efficient Forewarning Alarms
- Emergency Communications
- Emergency Air, Water & Food
- Fast Evacuation Routes
- Integral Safe Havens
- Access to Safety Equipment
- Hand-Lift Safety Equipment
- Retains Intrinsic Flexibility
- Wise Location
- Lessen Vulnerability
- Minimise Weaknesses
- Increase Strength Margins
- No Catastrophic Failure Modes
- Prevent Dynamic Fluid Peaks
- Minimisation of Debris
- Optimise Debris Buoyancy
- Ensure Response Success
- Ensure Recovery Success
- Carry Out Stress Tests

Design Options:

- Better Coping Capability
- Real Condition Stress Tested
- Regular Practical Exercises
- Adequate Response Time
- Adequate Scale
- Adequate Capability
- Trained Operatives
- Intuitive Design and Use
- Intuitive Direction
- No Single Point Failures
- No Common Cause Failures
- No Common Mode Failures
- Diversity of Systems
- Stress-Tested System Backups
- Independent Networks
- Redundancy of Components
- Modular-Standard Configuration
- Failure Zone Separation
- Debris Zone Free

Holistic Integrity

Resilience &

Sustainability

Stability

Strength

AR

Holistic Integrity

- Awareness
- Forewarning
- Preparedness
- Robustness
- Response
- Recovery
- Resources
- Coping
- Adaptability
- Surveillance

Resilience &

Sustainability

Holistic Integrity: Engineering Design

- Engineering Design Objectives
- Engineering Design Principles
- Engineering Design Options
- Flexible and Adaptable
- What If? Stress-Testing
- "360" Holistic Awareness
- Whole Systems Thinking Mind-set
- Merging Disciplines as System
- Socio-Technical Systems (Society)
- Use Established Risk Analysis
- Ensure Coping Capability
- Before, During and After Events
- Focused Subjective Qualification
- More Specific Quantification
- New Standards & Practice
- New Training and Education
- Improved Communication
- Public Honesty and Openness
- Better Informed Politics

Resilience &

Sustainability

ARUP Society

Holistic Integrity:

- Engineering Design Objectives
- Engineering Design Principles
- Engineering Design Options
- Flexible and Adaptable
- What If? Stress-Testing
- "360" Holistic Awareness
- Whole Systems Thinking Mind-set
- Merging Disciplines as System
- Socio-Technical Systems (Society)
- Use Established Risk Analysis
- Ensure Coping Capability
- Before, During and After Events
- Focused Subjective Qualification
- More Specific Quantification
- New Standards & Practice
- New Training and Education
- Improved Communication
- Public Honesty and Openness
- Better Informed Politics

Holistic Integrity Test:

- Awareness
- Forewarning
- Preparedness
- Robustness
- Response
- Recovery
- Resources
- Coping
- Adaptability
- Surveillance

Holistic Integrity

Showing we can Cope with Hazard-Shock Events

Holistic Integrity Test:

- Awareness
- Forewarning
- Preparedness
- Robustness
- Response
- Recovery
- Resources
- Coping
- Adaptability
- Surveillance

- Awareness
- Forewarning
- Preparedness
- Robustness
- Response
- Recovery
- Resources
- Coping

ARUP

- Adaptability
- Surveillance

HIT Test Criteria	SSER Before Shock	SSER During Shock Pro Ho Vo To So Fo	SSER After Shock	Complete Temporal Shock History
Awareness	↓			
Preparedness	_··· _ 🔶 - ·		· — · · →	
Forewarning		+		
Robustness		↓		
Response		->		
Recovery				
Resources			+	
Coping	-			•>
Adaptability				
Surveillance				

Holistic Integrity Test:

- Awareness
- Forewarning
- Preparedness
- Robustness
- Response
- Recovery
- Resources
- Coping
- Adaptability
- Surveillance

Nuclear Power

Energy Supply to the Structural Fabric

ARUP

Nuclear Power?

- Can be and is a reliable energy supply;
- Carbon-free power supply;
- Practiced, experienced people and knowledge;
- Potential long period of use;
- Engineering well established;
- But

Further development is needed for future Nuclear Power to be accepted:

- Reduced Capital and Operating Cost;
- Shorter Time for Build and Construction;
- Modular Design and Engineering;
- Simpler Design and Safety;
- Much Better Hazard Withstand; and
- Holistic Integrity & Coping Capability.

Accident Risk to Nuclear Power Plants specifically concentrates on:

- Protecting against Engineering Failure;
- Protecting against Human Error;
- Withstanding Earthquake;
- Withstanding Flood and Tsunami;
- Withstanding Storm Winds;
- Withstanding Aircraft Crash;
- Secure and Safe against Terrorism.

Considerations for Future Generation IV Nuclear Power Plants

Design Objectives

- Sustainable Basis to Design
- Low Energy Construction Methods
- Utilise Local Materials and Products
- Buildings are for People
- Consider the People Under Stress
- Account for Socio-Technical Needs
- Use Low Carbon-Input Materials
- Use Low Carbon-Input Systems
- Low External Energy Feed
- Low External Services Provision
- Plan for Long Period Islanding
- Plan for Peak Habitation Islanding
- Optimum Natural Day Lighting
- Integral Renewable Energy
- Stored Energy for Night Periods
- Ensure Personal Dignity
- Ensure Social Solidarity and Help
- Provide Medical Capability
- Intuitive Medical Equipment
- As-Needed Expert Guidance

Design Principles

- To Fit with the Coping Strategy
- Efficient Forewarning Alarms
- Emergency Communications
- Emergency Air, Water & Food
- Fast Evacuation Routes
- Integral Safe Havens
- Access to Safety Equipment
- Hand-Lift Safety Equipment
- Retains Intrinsic Flexibility
- Wise Location
- Lessen Vulnerability
- Minimise Weaknesses
- Increase Strength Margins
- No Catastrophic Failure Modes
- Prevent Dynamic Fluid Peaks
- Minimisation of Debris
- Optimise Debris Buoyancy
- Ensure Response Success
- Ensure Recovery Success
- Carry Out Stress Tests

Design Options

- Better Coping Capability
- Real Condition Stress Tested
- Regular Practical Exercises
- Adequate Response Time
- Adequate Scale
- Adequate Capability
- Trained Operatives
- Intuitive Design and Use
- Intuitive Direction
- No Single Point Failures
- No Common Cause Failures
- No Common Mode Failures
- Diversity of Systems
- Stress-Tested System Backups
- Independent Networks
- Redundancy of Components
- Modular-Standard Configuration
- Failure Zone Separation
- Debris Zone Free

Sharing an Uncertain World in 2017

Design & Holistic Integrity:

- Engineering Design Objectives
- Engineering Design Principles
- Engineering Design Options
- Flexible and Adaptable
- What If? Stress-Testing
- "360" Holistic Awareness
- Whole Systems Thinking Mind-set
- Merging Disciplines as System
- Socio-Technical Systems (Society)
- Use Established Risk Analysis
- Ensure Coping Capability
- Before, During and After Events
- Focused Subjective Qualification
- More Specific Quantification
- New Standards & Practice
- New Training and Education
- Improved Communication
- Public Honesty and Openness
- Better Informed Politics

Seismically Isolated Raft

////

0.0 OD Level

ARUP

From Olaus Magnus: Historia de gentibus septentrionalibus, 1555.

Safe and Secure Nuclear Engineering in an Uncertain World

Thank You

